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Anomalous reaction-transport processes: The dynamics beyond the law of mass action
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In this paper we reconsider the mass action law (MAL) for the anomalous reversible reaction A= B with
diffusion. We provide a mesoscopic description of this reaction when the transitions between two states A and
B are governed by anomalous (heavy-tailed) waiting-time distributions. We derive the set of mesoscopic
integro-differential equations for the mean densities of reacting and diffusing particles in both states. We show
that the effective reaction rate memory kernels in these equations and the uniform asymptotic states depend on
transport characteristics such as jumping rates. This is in contradiction with the classical picture of MAL. We

find that transport can even induce an extinction of the particles such that the density of particles A or B tends
asymptotically to zero. We verify analytical results by Monte Carlo simulations and show that the mesoscopic

densities exhibit a transient growth before decay.
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I. INTRODUCTION

The mass action law (MAL) plays a very important role in
a large number of chemical, biological, and physical systems
[1,2]. It states that the rate of an elementary reaction is pro-
portional to concentrations of reactants. MAL also gives the
expression for the equilibrium constant which is a main char-
acteristic of chemical equilibrium. To illustrate this, consider
the reversible reaction A= B, with B; and 3, denoting the
forward and backward rate constants. According to MAL,
the balance equations for the mean concentrations n; and n,
of diffusing particles A and B can be written as

al’ll
o D\V?n, - Bin; + Bany,
1
al’lz
E=D2V2”2+,31”1 = Bony, (1)

where D and D, are the diffusion coefficients of the par-
ticles A and B, respectively. It follows from Eq. (1) that the
uniform equilibrium state (n],n3) obeys the equation

n_i = & = Keq’ (2)

ny B
where K, represents the equilibrium constant of the reaction
process. This constant depends on the thermodynamic prop-
erties of the system, but is independent from the transport
parameters D; and D,. The purpose of this paper is to recon-
sider these two fundamental equations (1) and (2) for anoma-
lous reaction and transport.

Continuous-time random-walk (CTRW) models have
been widely used in recent years to gain insights into the
anomalous transport [3]. The extension of CTRW models to
reaction-transport phenomena presents modeling challenges,
because of the difficulty of taking into account chemical re-
actions within anomalous transport. Recently several authors
have explored the reaction-transport models in which the
standard diffusion is replaced by an anomalous (subdiffu-
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sive) transport [4—11]. It has been shown that the evolution
equations for density of particles are drastically different
from the standard reaction-diffusion equations. For example,
the transport and reaction terms are not separable as it hap-
pens in the classical case (1). Instead, one finds that the
transport term becomes dependent on the reaction constants
B, or B, [6,9]. The master equation for the mean density of
one of the reactants may include a crossed transport term [7].
This is a consequence of the non-Markovian nature of sub-
diffusion.

In previous works, however, reaction was always intro-
duced phenomenologically following the principles of clas-
sical reaction kinetics. The idea of this paper is to consider
both the reversible reaction A = B and subdiffusive transport
from a probabilistic point view. It is well known that the
classical kinetics in Eq. (1) corresponds to Markovian tran-
sition of particles from one state to another. Our aim is to
take into account anomalous (non-Markovian) transitions of
particles from the state A to B and backward and illustrate
how the transport process and reactions are coupled. Long
tail waiting time distributions describe a variety of phenom-
ena from complex and random materials [3]. Usually chemi-
cal reaction with simple kinetic scheme A =B involves
many intermediate reactions. The overall reaction is the re-
sult of sequential transitions and each of them is Markovian.
They are characterized by the standard exponential waiting
time distributions. But the observed overall two-state reac-
tion turns out to be non-Markovian with power-law waiting
time distributions. The possibility of long tail kinetics arises
because of averaging of exponential waiting time distribu-
tions. For example, this phenomenon has been observed in
stochastic transitions between closed and open state of ion
channel [12].

In what follows we will show that fundamental constant
K., becomes dependent on transport characteristics which is
in contradiction to the classical picture of MAL. This is due
to the anomalous nature of transitions A= B for which the
waiting time distribution exhibits the power-law decay with
the infinite mean waiting time. Let us mention that the situ-
ations that are outside the scope of the MAL have already
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been reported for diffusion-limited reactions with long-range
interactions in space [13]. The reversible reaction A= B can
be interpreted as a switching between two states A and B.
This topic has attracted a great interest recently because the
switching process can be non-Markovian. Examples include
two-state ion channel gating [12], stochastic resonance [14],
quantum dots [15,16], etc. For anomalous switching process
without transport the mean residence time of the particles in
each state is divergent [15,17]. As a result, the density of
particles in one state tends to zero in the limit #— o which
means the extinction of one of the states. Here we show that
the transport process can drastically modify extinction-
survival dynamics for anomalous transitions. One of the mo-
tivations for our study is the experimental data for a malig-
nant brain cancer that exhibits migration-proliferation
dichotomy [18]. The motility (transport) of cells and pheno-
type transitions A=B (proliferation = migration) can be
anomalous simultaneously [6]. A possible application of our
model is the isomerization reaction for which macromol-
ecules in two interconvertible states migrate with different
electrophoretic mobility [19]. Another interesting example is
quantum dots (QDs) which are two-state nanocrystals exhib-
iting anomalous transitions between two states [15,16]. QDs
can be used as markers for imaging and other biological
applications. Imaging techniques measure the fluorescent
light emitted by one of the two states of the QDs. So the
experimental results could be affected by the characteristics
of the random transition between states. We expect that our
model might be useful in interpreting those experiments.

II. STOCHASTIC MODEL FOR TRANSPORT
AND CHEMICAL REACTION

In this paper we consider the following stochastic model
for the transport and reversible reaction A= B. The particles
of type A and B randomly move along one-dimensional
space and switch between the states A and B. This random
walk with switching can be described by four sequences of
mutually independent random variables. Two sequences de-
scribe the waiting times between jumps for particles in the
state A and B correspondingly. We assume that these random
variables are identically distributed with probability density
function (pdf) ¢,(¢) for particles A and pdf ¢,(¢) for particles
B. Two other sequences describe the waiting times for ran-
dom transitions: A— B and B—A, respectively. They are
identically distributed with pdf’s i,(f) and i»,(), respec-
tively. For example, if we place the particle at the position x
at time 0 in state B, and if a random time for a jump is less
than a random time for reaction B—A, then the random
jump happens. However, if a random time for reaction is less
that a random time for a jump, then the transition B—A
occurs first. In other words, an event (reaction or jump) hap-
pens at a time which is the minimum of two random times.
So jumps and transitions A= B are not independent random
events as in [7,11].

We express the density of particles n;(x,) at position x at
time ¢ in terms of the initial distribution of particles n?(x) and
density of particles j;(x,7—7) that arrive at the same position
x at previous time #— 7. The balance equations for the mean
densities n; and n, of particles A and B are
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where ®(1)=[] ¢,(1)d7 and W,;(r)= [ ;;(7)d T are the corre-
sponding survival probabilities for ¢,(t) and ;(t). For ex-
ample, ®,(7) is the probability that a particle in the state A
does not jump until time ¢, and W,(¢) is the probability that
a particle in the state A does not switch to B until time ¢. The
first term on the right-hand side (RHS) of Eq. (3) represents
the contribution from the initial density of particles that have
neither jumped nor switched until time z. The density j;(x,?)
describes how the particles arrive at point x at time ¢ as a
result of the transport and switching processes. Equations for
the density j;(x,7) of particles A and the density j,(x,7) of
particles B can be written as

J106,8) = 09X D (1) iy, (1) + @, ()W 5(2) f nf(x - 2)py(2)dz
+sz(x,l—7')q)2(7')l//21(7')d7'
0

+ff J1x =zt =1 (DY (7)p(2)dzdT,
0 V-

Jalx,t) = ”?(X)q)l(t) (1) + 902(t)\P21(t)f ”(2)()6 —-2)py(2)dz
+ f J1(x,t =P (D hyp(7)dT
0

+ f f Jo(x =zt = 1) (T)W5 (7)ps(2)dzdT.  (4)
0 —0

The first equation is the conservation law for particles of
type A at time ¢ at position x. The first term on the RHS of
the equation accounts for the initial distribution ng(x) of par-
ticles in state B that switch to A at time ¢, provided they do
not jump up to time 7. The second term is the contribution
from the initial density n(x) of particles in state A that jump
to x from x—z at time ¢ having not switched until ¢. The
random jump length z is distributed by the dispersal kernel
p1(z). The third term represents the contribution from those
particles that switch from state B to state A after a waiting
time 7, under the condition that they do not jump during that
time. Finally, the fourth term corresponds to the contribution
of particles in state A that arrive at x—z at #— 7 that do not
switch to B during time 7.

III. MASTER EQUATIONS

The set of linear equations (3) and (4) can be solved by
using the Laplace-Fourier transforms, (x,7)— (g,s). One can
obtain two equations,
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sni(g.s) = ”(1](61) =ki(s)[pi(q) — 1]n1(g,5) — a,(s)ny(q,s)
+ay(s)ny(q.s)
and
sn(q.s) = n3(q) = kx()[pa(q) = 1na(g,9) + a1 ()1 (g.9)
—ay(s)ny(q.s).

Here we introduce

_ [‘Pi‘l’ig]s _ [(I)i'//ig]s
KO ew) ey

where [f],=f(s) denotes Laplace transform. Taking the in-
verse Laplace and Fourier transforms we obtain the follow-
ing master equations:

om _

—ff ny(t—7,x =2k (1) p,(2) — 82)]dzd
o )yl .

—f al(T)nl(t—T,x)dT+f a(T)n,(t — 7,x)dT,

0 0
% - f f nay(t = 7.x = k(1 pa(2) = 8z) Jdzd T
0J -

+f al(T)nl(t—T,x)dT—f a(T)n,(t — 7,x)dT,

0 0
(6)

where k;(r) and a,(t) are the inverse Laplace transforms of
ki(s), a;(s) defined in Eq. (5). The most interesting feature of
the system (6) is that effective reaction rate memory kernels
a,(t) and a,(r) depend on the transport through the survival
probabilities ®,(r) and d,(r), while the transport memory
kernels k,(7) and k,(r) depend on statistical characteristics of
reactions such as ;. If the random waiting times for switch-
ing and jumping are exponentially distributed, ¢@,=\;e™,
b= B.e i, then these dependencies cease to exist. As a re-
sult the transport and reaction terms are separable as in the
classical case (1). For example, if we use the diffusive ap-
proximation for transport p;(q)~1-o7¢* (i.e., small jump
lengths), then the system (6) can be written as classical
reaction-diffusion equations (1), with D,=\;o7. Similarly,
for a Markovian switching process with subdiffusive trans-
port, we could recover from Eq. (6) the model for cancer
spreading studied in [6]. If the waiting time pdf ¢, has a y
distribution as #,=B1te " and @;=\;e™M, then a;(s)
=,8%(2,8, +X;+s)7!. So the reaction-rate memory kernels are

at) = B; e_(zﬁi+}\i)t, i=1,2. (7)

This formula shows that the effective reaction rate kernels
depend on the rate of jumps \;.

A. Asymptotic states as t— «

Now, let us find the uniform stationary states correspond-
ing to Eq. (6) under the condition n7 +n5=1. From the limit
q— 0 one finds p;(¢)=1, so we obtain the asymptotic state as
s—0,
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(n7,n3) =lim
s—0

( a,(s) a;(s) ) )
ay(s) +ax(s) ay(s) +ax(s) )

The main feature of this asymptotic state is that in general it
depends on the characteristics of the transport process which
is in contradiction with the mass action law (2). This follows
from the fact that the survival function ®; appears in the
definition of a;. This happens for any situation except when
the switching process is Markovian for which lim,_,, q;
=B

Assume now that the reaction process is governed by a
power-law decaying distribution of waiting times. We use the
standard approximation [¢;;],~1-(8; )% as s—0 with
%;<1. On the contrary, for the transport we consider the
Markovian case, ¢;(f)=N;e™. Then, we find that the state
(8) turns into

( )\;—721[3321 )\{—lelgf'lz )
1- 1- N 1- C)
)\1 712’3}’124_)\2 7’21’3%’21 )\1 7123?124_)\2 721’3%’21

where the explicit dependencies of asymptotic states on the
transport parameters A; and A, are evident. In fact, the ratio
of the two uniform densities in the limit r— is

o =721 3721
ng A, B3 _

— =K, 10
ny )\1—7123?12 (10)

where K becomes dependent on the transport parameters A
and \, [see Eq. (2) for comparison]. Note, however, this new
constant K cannot be considered an equilibrium constant
since in the non-Markovian case considered here a thermo-
dynamic equilibrium state cannot be defined.

B. Survival-extinction phenomenon

Let us assume B;<p,; then the MAL (2) predicts n]
>n;5. On the contrary, it is clear from Eq. (10) that one could
choose the rates of jumping A and A, so that the inequality
can be inverted to ny <n,. We obtain even more dramatic
results if we take the limit \; — 0 or A, — 0. If, for example,
we consider the limit A;—0 (A, # 0), then one can observe
the extinction of particles in state B and survival of particles
in state A, that is, n; — 1 and n,—0 as t— [see (9)]. So we
find from our model that transport process can induce a sur-
vival and/or extinction of one of the two densities for anoma-
lous reactions. To validate this phenomenon we have per-
formed the direct Monte Carlo simulations of two-states
random walks. We model the evolution of individual par-
ticles as follows: At r=0, every particle is assigned two ran-
dom waiting times, one for switching to the other state and
one for jumping to a new position. These times are distrib-
uted according to the pdf’s for switching and jumping, re-
spectively. According to our random walk model, only the
minimum of two random times is chosen. So, the particle
either switches or jumps depending on what the minimum
waiting time is, and after that the process starts again. To
calculate the average density, around 107 particles have been
used in our simulations. Since we are interested only in the
temporal dynamics of the average density of the particles,
the spatial component is not explicitly considered in the
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FIG. 1. Time evolution of the density n; obtained from Monte
Carlo simulations for different values of the parameters \; and \,;
o1=03=1, B1=Br=1, 7,,=0.25, y5=0.5.

simulations. The results are illustrated in Fig. 1 where one
can see that if A\{ #0 and \,=0, then we might observe the
temporal growth of n; before the final decay to zero (solid
line). However, if we set A\;=\,=0 (dashed line), then the
limit for the density of particles in state A is completely
different, that is, n; — 1 as t— .

The result n;,— 1 as \;— 0 imply that if the particles do
not move in one of the states, they survive. This idea of
“staying quiet helps you to surviv”’ can be understood from
the interplay between the waiting times for reactions and
jumps. According to our derivation, the reaction process, say
the transition from state A to state B, is actually governed by
the density ®, ¢, [the particles react only if they have not
jumped before, as can be seen from Eq. (4)]. We can refer to
this function as the effective waiting time pdf. For an anoma-
lous switching process with Markovian transport the
asymptotic behavior of the effective pdf reads as @i,
~ ¢ 1=712¢7M7 Then, the mean waiting time is finite, and for
this reason the system reaches a stationary state, given by
Eq. (9). However, in the limit A\;—0 the effective mean
waiting time diverges, which makes the reaction A — B much
slower than the backward reaction B— A, so the particles
tend to get trapped in the state A. For this reason we obtain
n;—1 and n, —0 in the long-time limit.

For anomalous transport and anomalous reaction (switch-
ing), we have ;(s)~1 —(,Hi_ls)”i and ¢;(s) ~ 1—()\;1s)7f,
with ;<1 and y,;;<<1. It is helpful again to use the idea of
an effective waiting time distribution for reaction, ®;;
~ ¢ 1=%=%j S0 that, the effective mean waiting time can be
finite, provided that the condition y;+y;;> 1 is satisfied. Fig-
ure 2 shows the phase diagram for asymptotic states n] and
n, depending on the values of 7y, + vy}, and y,+ ;. If both of
them are larger than 1, then the transitions 1 —2 and 2—1
are governed by finite mean waiting times, so a coexistence
of two states is possible. In other regions, the divergences of
the mean waiting times make the particles get trapped in the
state where the switching process is slower. Therefore, one
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FIG. 2. Phase diagram of the extinction-survival regions for
anomalous switching and transport in terms of the exponents y; and

Yij-

of the states becomes extinct in the asymptotic regime. These
results can be explained by a coupled renewal property as-
sumed in our model. If the internal waiting time of the par-
ticles starts from zero after each event (reaction or jump),
then we have a competition between both processes to be the
first to occur, and so coupled effects emerge. This coupled
renewal property is opposite to additive renewal property
where the random walk in space is completely independent
of the reaction process (see, for example, [7]).

IV. CONCLUSIONS

We have presented a non-Markov model for the reversible
reaction A = B and studied the interplay between the anoma-
lous transport and anomalous reaction processes imple-
mented in a probabilistic way. Thus, we have been able to
explore those situations that are beyond mass action law. We
have derived mesoscopic integro-differential equations for
the mean densities of particles in states A and B when the
transitions between two states A and B and jumps in space
are governed by heavy-tailed waiting-time distributions. It
has been shown that the anomalous properties of the revers-
ible reaction yield the appearance of unusual properties such
as dependence of asymptotic states on transport and the tran-
sient growth of densities before decay. We have found that
the transport process can modify completely the uniform sta-
tionary regimes. In particular, it can induce the survival-
extinction of one of the states. These results have been vali-
dated by direct Monte Carlo simulations of a two-state
random walk.
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